Part Number Hot Search : 
DTC114 G391TN SD110 2SC51 SD110 XP152 SE5561FE 1102C
Product Description
Full Text Search
 

To Download FAN7528MX Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 FAN7528 Dual Output Critical Conduction Mode PFC Controller
December 2005
FAN7528 Dual Output Critical Conduction Mode PFC Controller
Features
* Low Total Harmonic Distortion (THD) * Dual Output Voltage Control * Precise Adjustable Output Over Voltage Protection * Open-feedback Protection and Disable Function * Zero Current Detector * 160us Internal Start-up Timer * MOSFET Over Current Protection * Under Voltage Lock Out with 3.5V Hysteresis * Low Start-up (40uA) and Operating Current (1.5mA) * Totem Pole Output with High State Clamp * 400mA Peak Gate Drive Current * 8-pin DIP or 8-pin SOP
Description
The FAN7528 is an active power factor correction (PFC) controller for boost PFC applications which operates in the critical conduction mode (CRM). It uses the voltage mode PWM that compares an internal ramp signal with the error amplifier output to generate MOSFET turn-off signal. Because the voltage mode CRM PFC controller does not need the rectified AC line voltage information, it can save the power loss of the input voltage sensing network that is necessary for the current mode CRM PFC controller. The FAN7528 provides the dual output voltage control function without the AC line voltage sensing for adapter applications. It changes the PFC output voltage according to the AC line voltage. It provides many protection functions such as over voltage protection, open-feedback protection, over current protection and under voltage lock out protection. The FAN7528 can be disabled if the INV pin voltage is lower than 0.45V and then the operating current decreases to 65uA. Using a new variable ontime control method, THD is lower than the conventional CRM boost PFC ICs.
Applications
* Adapter
Related Application Notes
* AN6012 - Design of Power Factor Correction Circuit Using FAN7528
Ordering Information
Part Number
FAN7528N FAN7528M FAN7528MX
Operating Temp. Range
-40C to +125C -40C to +125C -40C to +125C
Pb-Free
Yes Yes Yes
Package
8-DIP 8-SOP 8-SOP
Packing Method
Rail Rail Tape & Reel
Marking Code
FAN7528 FAN7528 FAN7528
(c)2005 Fairchild Semiconductor Corporation
1
www.fairchildsemi.com
FAN7528 Rev. 1.0.1
FAN7528 Dual Output Critical Conduction Mode PFC Controller
Typical Application Diagrams
L D Vo
AC In
VAUX
NAUX RZCD
R2 ZCD Co Vcc MOT CS COMP R1 GND INV
Figure 1. Typical Boost PFC Application
Internal Block Diagram
Vcc 8
UVLO
2.5V Ref Internal Bias
Vref Vcc
12V
8.5V
Disable 160us Timer
Drive Output
7 OUT
ZCD 5
6.7V 1.4V 1.5V Zero Current Detector
S Q R OVP 2.66V 2.55V
CS 4
40k 8pF 0.8V OCP Comparator
Disable
0.45V 0.35V
1V
MOT 3
Saw Tooth Generator
Error Amp
Gm
Dual Output Reference Generator 1.5V/2.5V
1 INV
6
2
GND
COMP
Figure 2. Functional Block Diagram of FAN7528
2 FAN7528 Rev. 1.0.1
www.fairchildsemi.com
FAN7528 Dual Output Critical Conduction Mode PFC Controller
Pin Assignments
Vcc 8
OUT 7
GND 6
ZCD 5
WWW
FAN 7528
1 INV 2 3 COMP MOT 4 CS
Figure 3. Pin Configuration (Top View)
Pin Definitions
Pin Number Pin Name
1 INV
Pin Function Description
This pin is the inverting input of the error amplifier. The output voltage of the boost PFC converter should be resistively divided to 2.5V at the high line condition and connected to this pin. If this pin voltage is controlled to be lower than 0.45V, the device is disabled. This pin is the output of the transconductance error amplifier. Some components for the output voltage compensation should be connected between this pin and GND. This pin is used to set the slope of the internal ramp. The voltage of this pin is maintained to be 1V. If a resistor is connected between this pin and GND, current flows out of the pin and the slope of the internal ramp is proportional to this current. This pin is the input of the over current protection comparator. The MOSFET current is sensed using a sensing resistor and the resulting voltage is applied to this pin. An internal RC filter is included to filter switching noise. This pin is sensitive to the negative voltage below -0.3V. For proper operation, the stray inductance in the sensing path and the inductance of the sensing resistor must be minimized. This pin is the input of the zero current detection block. If the voltage of this pin goes higher than 1.5V and then goes lower than 1.4V, the MOSFET is turned on. This pin is used for the ground potential of all the pins. For proper operation, the signal ground and the power ground should be separated. This pin is the gate drive output. The peak sourcing and sinking current level is 400mA. For proper operation, the stray inductance in the gate driving path must be minimized. This pin is the IC supply pin. IC current and MOSFET drive current are supplied using this pin.
2
COMP
3
MOT
4
CS
5 6 7 8
ZCD GND OUT Vcc
3
FAN7528 Rev. 1.0.1
www.fairchildsemi.com
FAN7528 Dual Output Critical Conduction Mode PFC Controller
Absolute Maximum Ratings
(Ta=25C, unless otherwise specified) Parameter
Supply Voltage Peak Drive Output Current Driver Output Clamping Diodes Vo>Vcc or Vo<-0.3V Detector Clamping Diodes Error Amp, MOT, CS Input Voltages Operating Junction Temperature Operating Temperature Range Storage Temperature Range ESD Capability, HBM Model (All pins except Vcc) ESD Capability, Machine Model
Symbol
Vcc IOH, IOL Iclamp Idet Vin Tj Topr Tstg -
Value
23 400 10 10 -0.3 to 6 150 -40 to 125 -65 to 150 2.0 300
Unit
V mA mA mA V C C C kV V
Thermal Impedance
Parameter
Thermal Resistance, Junction to Ambient 8-DIP 8-SOP
Symbol
Rja
Value
110 150
Unit
C/W C/W
Note: 1. Regarding the test environment and PCB type, please refer to JESD51-2 and JESD51-10.
4
FAN7528 Rev. 1.0.1
www.fairchildsemi.com
FAN7528 Dual Output Critical Conduction Mode PFC Controller
Electrical Characteristics
(Vcc = 14V, Ta = -40C~125C, unless otherwise specified) Parameter Symbol Condition Min. Typ. Max. Unit
UNDER VOLTAGE LOCK OUT SECTION
Start Threshold Voltage Stop Threshold Voltage UVLO Hysteresis Vth(start) Vth(stop) HY(uvlo) Vcc increasing Vcc decreasing 11 8 3 12 8.5 3.5 13 9 4 V V V
SUPPLY CURRENT SECTION
Start-up Supply Current Operating Supply Current Dynamic Operating Supply Current Operating Current at Disable Ist Icc Idcc Icc(dis) Vcc = Vth(start) - 0.2V Output no switching 50kHz, Cl=1nF Vinv = 0V 40 40 1.5 2.5 65 70 3 4 90 A mA mA A
ERROR AMPLIFIER SECTION
Ta = 25C Voltage Feedback Input Threshold1 Vref1 Voltage Feedback Input Threshold2 Line Regulation Temperature Stability of Vref1(1) Input Bias Current Output Source Current Output Sink Current Output Upper Clamp Voltage Zero Duty Cycle Output Voltage Transconductance(1) Output Voltage Selection Threshold Output Voltage Reset Threshold(1) Vref2 Vref1 Vref3 Ib(ea) Isource Isink Veao(H) Veao(Z) gm Vth(in) Vth(reset) Vcc = 14V ~ 23V Vinv = 1V ~ 4V Vinv = 2.4V Vinv = 2.6V Ta = 25C 2.435 1.45 -0.5 4.5 0.7 90 1.24 3 2.5 1.5 0.1 20 -12 12 5.5 1 115 1.3 4.5 2.565 1.55 10 0.5 6.5 1.3 140 1.36 6 V V mV mV A A A V V mho V V 2.465 2.5 2.535 V
MAXIMUM ON-TIME SECTION
Maximum On-time Voltage Maximum On-time Programming Vmot Ton-max Rmot = 13.7k Rmot = 13.7k, Ta = 25C 0.95 18 1 22.5 1.05 27 V A
CURRENT SENSE SECTION
Current Sense Input Threshold Voltage Limit Input Bias Current Current Sense Delay to Output(1) Vcs(limit) Ib(cs) Td(cs) Vcs = 0V ~ 1V 0.7 -1 0.8 -0.1 350 0.9 1 500 V A ns
5
FAN7528 Rev. 1.0.1
www.fairchildsemi.com
FAN7528 Dual Output Critical Conduction Mode PFC Controller
Electrical Characteristics (Continued)
(Vcc = 14V, Ta = -40C~125C, unless otherwise specified) Parameter
ZERO CURRENT DETECT SECTION
Input Voltage Threshold(1) Detect Hysteresis(1) Input High Clamp Voltage Input Low Clamp Voltage Input Bias Current Source Current Capability(1) Sink Current Capability(1) Maximum Delay from ZCD to Output Turn-on(1) Vth(ZCD) HY(ZCD) Vclamp(h) Vclamp(l) Ib(ZCD) Isource(zcd) Isink(zcd) Tdead Idet = 3mA Idet = -3mA VZCD = 1V ~ 5V 1.35 0.05 6 0 -1 100 1.5 0.1 6.7 0.6 -0.1 1.65 0.15 7.4 1 1 -10 10 200 V V V V A mA mA ns
Symbol
Condition
Min.
Typ.
Max.
Unit
OUTPUT SECTION
Output Voltage High Output Voltage Low Rising Time(1) Voh Vol Tr Tf Vo(max) Vo(uvlo) Io = -100mA Io = 100mA Cl = 1nF Cl = 1nF Vcc = 20V, Io = 100A Vcc = 5V, Io = 100A 9.2 11.5 11 1 50 50 13 12.8 2.5 100 100 14.5 1 V V ns ns V V
Falling Time(1) Maximum Output Voltage Output Voltage with UVLO Activated
RESTART TIMER SECTION
Restart Timer Delay td(rst) 40 160 360 s
OVER VOLTAGE PROTECTION SECTION
OVP Threshold Voltage OVP Hysteresis Vovp HY(ovp) Ta = 25C 2.6 0.06 2.66 0.11 2.72 0.16 V V
ENABLE SECTION
Enable Threshold Voltage Enable Hysteresis Vth(en) HY(en) 0.4 0.05 0.45 0.1 0.5 0.15 V V
Note: 1. These parameters, although guaranteed by design, are not tested in mass production.
6
FAN7528 Rev. 1.0.1
www.fairchildsemi.com
FAN7528 Dual Output Critical Conduction Mode PFC Controller
Typical Performance Characteristics
Start Threshold Voltage
12.8
9.2
Stop Threshold Voltage
12.4
8.8
Vth(start)[V]
12.0
Vth(stop)[V]
8.4
11.6
8.0
11.2
7.6
-60
-40
-20
0
20
40
60
80
100
120
140
-60
-40
-20
0
20
40
60
80
100
120
140
Temperature[
]
Temperature[
]
Figure 4. Start Threshold Voltage vs. Temp.
UVLO Hysteresis
Figure 5. Stop Threshold Voltage vs. Temp.
Start-up Supply Current
4.0
70
60
3.8
50
HY(uvlo)[V]
3.6
40
Ist[uA]
-60 -40 -20 0 20 40 60 80 100 120 140
3.4
30
20
3.2
10
3.0
0 -60 -40 -20 0 20 40 60 80 100 120 140
Temperature[
]
Temperature[
]
Figure 6. UVLO Hysteresis vs. Temp.
Operating Supply Current
Figure 7. Start-up Supply Current vs. Temp.
Dynamic Operating Supply Current
3.0
4.0 3.5 3.0
2.5
2.0
2.5
1.5
Idcc[mA]
-60 -40 -20 0 20 40 60 80 100 120 140
Icc[mA]
2.0 1.5 1.0
1.0
0.5
0.5
0.0
0.0 -60 -40 -20 0 20 40 60 80 100 120 140
Temperature[
]
Temperature[
]
Figure 8. Operating Supply Current vs. Temp.
Figure 9. Dynamic Operating Current vs. Temp.
7
FAN7528 Rev. 1.0.1
www.fairchildsemi.com
FAN7528 Dual Output Critical Conduction Mode PFC Controller
Typical Performance Characteristics (Continued)
90
Operating Current at Disable
2.56
Voltage Feedback Input Threshold1
80
2.54
2.52
Icc(dis)[uA]
70
Vref1[V]
-60 -40 -20 0 20 40 60 80 100 120 140
2.50
60
2.48
50
2.46
40
2.44 -60 -40 -20 0 20 40 60 80 100 120 140
Temperature[
]
Temperature[
]
Figure 10. Icc at Disable vs. Temp.
Voltage Feedback Input Threshold2
1.54 0.4
Figure 11. Vref1 vs. Temp.
Input Bias Current
1.52
0.2
1.50
Ib(ea)[uA]
-60 -40 -20 0 20 40 60 80 100 120 140
Vref2[V]
0.0
1.48
-0.2
1.46
-0.4
-60
-40
-20
0
20
40
60
80
100
120
140
Temperature[
]
Temperature[
]
Figure 12. Vref2 vs. Temp.
Output Source Current
-6
Figure 13. Input Bias Current vs. Temp.
Output Sink Current
18
-9 15
Isource[uA]
-12
Isink[uA]
-60 -40 -20 0 20 40 60 80 100 120 140
12
-15 9 -18 6 -60 -40 -20 0 20 40 60 80 100 120 140
Temperature[
]
Temperature[
]
Figure 14. Error Amp. Source Current vs. Temp.
Figure 15. Error Amp. Sink Current vs. Temp.
8
FAN7528 Rev. 1.0.1
www.fairchildsemi.com
FAN7528 Dual Output Critical Conduction Mode PFC Controller
Typical Performance Characteristics (Continued)
6.5
Output Upper Clamp Voltage
1.3
Zero Duty Cycle Output Voltage
1.2 6.0 1.1
Veao(H)[V]
Veao(Z)[V]
5.5
1.0
0.9
5.0 0.8
4.5 -60 -40 -20 0 20 40 60 80 100 120 140
0.7 -60 -40 -20 0 20 40 60 80 100 120 140
Temperature[
]
Temperature[
]
Figure 16. Error Amp. Clamp Voltage vs. Temp.
Output Voltage Selection Threshold
Figure 17. Zero Duty Output Voltage vs. Temp.
Maximum On-Time Voltage
1.04
1.36
1.34
1.32
1.02
Vth(in)[V]
1.30
Vmot[V]
-60 -40 -20 0 20 40 60 80 100 120 140
1.00
1.28 0.98 1.26 0.96 1.24 -60 -40 -20 0 20 40 60 80 100 120 140
Temperature[
]
Temperature[
]
Figure 18. Output Select Threshold vs. Temp.
Figure 19. MOT pin Voltage vs. Temp.
Current Sense Input Threshold Voltage
0.88
Maximum On-Time Programming
26
0.84 24
Ton-max[us]
Vcs(limit)[V]
0.80
22
0.76 20 0.72 18 -60 -40 -20 0 20 40 60 80 100 120 140 -60 -40 -20 0 20 40 60 80 100 120 140
Temperature[
]
Temperature[
]
Figure 20. Maximum On-time vs. Temp.
Figure 21. Current Limit vs. Temp.
9
FAN7528 Rev. 1.0.1
www.fairchildsemi.com
FAN7528 Dual Output Critical Conduction Mode PFC Controller
Typical Performance Characteristics (Continued)
Input Bias Current
0.9
7.4
Input High Clamp Voltage
7.2 0.6 7.0 0.3
Vclamp(h)[V]
-60 -40 -20 0 20 40 60 80 100 120 140
Ib(cs)[uA]
6.8
0.0
6.6
-0.3
6.4 -0.6 6.2 -0.9 6.0 -60 -40 -20 0 20 40 60 80 100 120 140
Temperature[
]
Temperature[
]
Figure 22. CS Input Bias Current vs. Temp.
Input Low Clamp Voltage
Figure 23. ZCD Input High Clamp vs. Temp.
Input Bias Current
0.8
1.0
0.8 0.4
Vclamp(l)[V]
Ib(ZCD)[uA]
-60 -40 -20 0 20 40 60 80 100 120 140
0.6
0.0
0.4
-0.4 0.2 -0.8 0.0 -60 -40 -20 0 20 40 60 80 100 120 140
Temperature[
]
Temperature[
]
Figure 24. ZCD Input Low Clamp vs. Temp.
Output Voltage High
12.5
Figure 25. ZCD Input Bias Current vs. Temp.
Output Voltage Low
2.5
12.0
2.0
11.5 1.5
Voh[V]
11.0
Vol[V]
-60 -40 -20 0 20 40 60 80 100 120 140
1.0
10.5
10.0
0.5
9.5 0.0 -60 -40 -20 0 20 40 60 80 100 120 140
Temperature[
]
Temperature[
]
Figure 26. Output Voltage High vs. Temp.
Figure 27. Output Voltage Low vs. Temp.
10
FAN7528 Rev. 1.0.1
www.fairchildsemi.com
FAN7528 Dual Output Critical Conduction Mode PFC Controller
Typical Performance Characteristics (Continued)
14.5
Maximum Ouput Voltage
1.0
Output Voltage with UVLO Activated
14.0
0.8
13.5
13.0
Vo(uvlo)[V]
-60 -40 -20 0 20 40 60 80 100 120 140
Vo(max)[V]
0.6
0.4
12.5
12.0
0.2
11.5
0.0 -60 -40 -20 0 20 40 60 80 100 120 140
Temperature[
]
Temperature[
]
Figure 28. Maximum Output Voltage vs. Temp.
Restart Time Delay
Figure 29. Output Voltage when UVLO vs. Temp.
OVP Threshold Voltage
2.74
400
350
2.72
300
2.70
Td(rst)[us]
Vovp[V]
250
2.68 2.66 2.64 2.62 2.60
200
150
100
50 -60 -40 -20 0 20 40 60 80 100 120 140
-60
-40
-20
0
20
40
60
80
100
120
140
Temperature[
]
Temperature[
]
Figure 30. Restart Timer Delay vs. Temp.
OVP Hysteresis
Figure 31. Over Voltage Protection vs. Temp.
Enable Threshold Voltage
0.14
0.50
0.48 0.12
HY(ovp)[V]
0.10
Vth(en)[V]
-60 -40 -20 0 20 40 60 80 100 120 140
0.46
0.44
0.08 0.42
0.06
0.40 -60 -40 -20 0 20 40 60 80 100 120 140
Temperature[
]
Temperature[
]
Figure 32. OVP Hysteresis vs. Temp.
Figure 33. Enable Threshold Voltage vs. Temp.
11
FAN7528 Rev. 1.0.1
www.fairchildsemi.com
FAN7528 Dual Output Critical Conduction Mode PFC Controller
Typical Performance Characteristics (Continued)
Enable Hysteresis
0.14
0.12
HY(en)[V]
0.10
0.08
0.06
-60
-40
-20
0
20
40
60
80
100
120
140
Temperature[
]
Figure 34. Enable Hysteresis vs. Temp.
12
FAN7528 Rev. 1.0.1
www.fairchildsemi.com
FAN7528 Dual Output Critical Conduction Mode PFC Controller
Applications Information
1. Error Amplifier Block
The error amplifier block has several functions such as dual output function, over voltage protection function and disable function. The control speed of the PFC converter is very slow, therefore the over voltage protection of the output voltage is very important. The FAN7528 provides a precise OVP function that shuts down the drive circuit when the INV pin voltage exceeds 2.66V,. and there is 0.11V hysteresis.
1.1 Dual Output Function
Unlike conventional CRM PFC controllers, the FAN7528 has the dual output control function according to the AC line voltage without sensing the rectified AC line voltage. Because the output voltage of the boost converter is proportional to the peak voltage of the input AC line voltage before the boost converter starts switching, the INV pin voltage represents the peak AC line voltage. When the AC line is connected to the boost converter, Vcc voltage starts to increase from zero voltage. If the Vcc voltage reaches 8.5V, the dual output reference generator compares the INV pin voltage with 1.3V reference and if the INV pin voltage is lower than 1.3V the dual output reference generator sets the reference voltage of the error amplifier to be 1.5V. If the INV pin voltage is higher than 1.3V, the reference voltage is set to be 2.5V. That means if the output voltage of the boost converter is set to be 400V at high line, the output voltage is 240V(400V*1.5/2.5) at low line. If the output voltage is set to be 390V at high line, the output voltage is 234V at low line. Because this block does not need the input voltage sensing network, the power loss and cost related with the sensing network can be saved. The reference voltage of the error amplifier is not reset until the Vcc voltage goes below 4.5V.
1.3 Disable Function
If the INV pin voltage is lower than 0.45V, most of the internal block is disabled and the operating current is reduced to be 65uA, and there is 0.1V hysteresis in the comparator.
1.4 Error Amplifier
The error amplifier is a transconductance type amplifier. The output current of the amplifier is proportional to the voltage difference between the inverting input and the non inverting input of the amplifier. Some resistors and capacitors should be connected to the error amplifier output pin, the COMP pin, for the output voltage loop compensation.
2. Zero Current Detection Block
The zero current detector(ZCD) generates the turn-on signal of the MOSFET when the boost inductor current reaches zero using an auxiliary winding coupled with the inductor. If the voltage of the ZCD pin goes higher than 1.5V then the ZCD comparator waits until the voltage goes below 1.4V. If the voltage goes below 1.4V, the zero current detector turns on the MOSFET. The ZCD pin is protected internally by two clamps, 6.7V high clamp and 0.6V low clamp. The 160us timer generates a MOSFET turn-on signal if the drive output has been low for more than 160us from the falling edge of the drive output.
2.66V OVP
2.55V
Disable
0.45V 0.35V
Vin 160us Timer ZCD 5 RZCD 6.7V 1.4V 1.5V Zero Current Detector R S Q Turn-on Signal
Dual Output Reference Generator Error Amp
Gm
Vout
1.5V/2.5V 1
INV
Figure 36. Zero current detector block 3. Saw Tooth Generator Block
The output of the error amplifier and the output of the saw tooth generator are compared to determine the MOSFET turn-off instance. The slope of the saw tooth is determined by an external resistor connected to the MOT pin. The voltage of the MOT pin is 1V and the slope is proportional to the current flowing out of the MOT pin. The internal ramp signal has 1V offset, therefore the drive output is shut down if the voltage of the COMP pin is lower than 1V. The MOSFET on-time is maximum when the COMP pin voltage is 5V. According to the slope of the internal ramp, the maximum on-time can be programmed. The necessary maximum on-time depends on the boost inductor, lowest
2
COMP
Figure 35. Error amplifier block 1.2 Over Voltage Protection Function
13
FAN7528 Rev. 1.0.1
www.fairchildsemi.com
FAN7528 Dual Output Critical Conduction Mode PFC Controller
AC line voltage and maximum output power. The resistor value should be designed properly.
O ff S ign al MOT 3
1V 1V
S aw T o oth G en era tor
E rror A m p O u tp u t
Figure 37. Zero current detector block 4. Over Current Protection Block
The MOSFET current is sensed using an external sensing resistor for the over current protection. If the CS pin voltage is higher than 0.8V, the over current protection comparator generates a protection signal. An internal RC filter is included to filter switching noise.
40k
CS 4
8pF 0.8V
OCP Signal Over Current Protection Comparator
Figure 38. Over current protection block 5. Switch Drive Block
The FAN7528 contains a single totem-pole output stage designed for a direct drive of power MOSFET. The drive output is capable of up to 400mA peak current with a typical rise and fall time of 50ns with 1nF load. The output voltage is clamped to be 13V to protect MOSFET gate even if the Vcc voltage is higher than 20V.
6. Under Voltage Lock Out Block
If the Vcc voltage reaches 12V, the IC's internal blocks are enabled and start operation. If the Vcc voltage drops below 8.5V, most of the internal blocks are disabled to reduce the operating current. Vcc voltage should be higher than 8.5V under normal conditions.
14
FAN7528 Rev. 1.0.1
www.fairchildsemi.com
FAN7528 Dual Output Critical Conduction Mode PFC Controller
Typical application circuit
Application
Adapter
Output power
100W
Input voltage
Universal input (90~264Vac)
Output voltage
389V/232V
Features
* High efficiency (>90% at 90Vac input) * Low THD(total harmonic distortion) (<10% at 264Vac input) * Dual output control
Key Design Notes
* Diode D4 is used to prevent IC malfunction that can happen if the CS pin voltage is lower than -0.3V. * Important Component s for low THD are R2, R5 and C11.
1. Schematic
T1 VAUX BD C5 R3 R4 C10 NTC C3 C4 C2 LF1 C1
1
PFC OUTPUT D2
R5 D3 Q1 R6 D1 C11 R10
ZD1
8 7 6 5
C9
ZCD
GND
OUT
Vcc
COMP
R2
INV
FAN7528
MOT CS
R9
R11
2
3
V1 F1 C6 AC INPUT
R8 C8 C7 R1
4
R7 D4
Figure 39. Schematic
15
FAN7528 Rev. 1.0.1
www.fairchildsemi.com
FAN7528 Dual Output Critical Conduction Mode PFC Controller
2. Inductor Schematic Diagram
1
NVcc
2 3
Np
5
Figure 40. Inductor Schematic Diagram 3.Winding Specification No
NVcc Np
Pin (sf)
21 53
Wire
0.2 x 1 0.2 x 10
Turns
5
Winding Method
Solenoid Winding
Insulation: Polyester Tape t = 0.050mm, 4Layers 44 Solenoid Winding
Outer Insulation: Polyester Tape t = 0.050mm, 4Layers Air Gap: 0.6mm for each leg
4.Electrical Characteristics Pin
Inductance 3-5
Specification
400uH 10%
Remarks
100kHz, 1V
5. Core & Bobbin
* Core : EI 3026 * Bobbin : EI3026 * Ae(mm2) : 111
16
FAN7528 Rev. 1.0.1
www.fairchildsemi.com
FAN7528 Dual Output Critical Conduction Mode PFC Controller
6.Demo Circuit Part List
Part
F1
Value
Fuse
3A/250V
Note
Part
T1
Value
Inductor
400uH
Note
EI3026
NTC
NTC 10D-9 MOSFET
Resistor
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 10k 300k 330k 100 20k 10 0.22 10k 10k 2M 12.9k 1/4W 1/4W 1/2W 1/4W 1/4W 1/4W 1/2W 1/4W 1/4W 1/4W 1/4W
Q1
FQPF13N50C
Fairchild
Diode D1 D2 D3 D4 ZD1 1N4148 BYV26C 1N5819 1N5819 1N4746 Fairchild 600V, 1A Fairchild Fairchild 18V
Bridge Diode
BD KBL406 600V/4A
Line Filter Capacitor
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 150nF/275VAC 330nF/275VAC 2.2nF/3kV 2.2nF/3kV 100nF/630V 47uF/25V 220nF/50V 1uF 100uF/450V 12nF/100V 56pF/50V Box Capacitor Box Capacitor Ceramic Capacitor Ceramic Capacitor Film Capacitor Electrolytic Capacitor Ceramic Capacitor MLCC Electrolytic Capacitor Film Capacitor Ceramic Capacitor V1 471 TNR 470V IC1 FAN7528 LF1 40mH Wire 0.4mm
IC
Fairchild
17
FAN7528 Rev. 1.0.1
www.fairchildsemi.com
FAN7528 Dual Output Critical Conduction Mode PFC Controller
7. Layout
Power Ground
Separate the power ground and the signal ground
Signal Ground
Place the output voltage sensing resistors close to IC
Figure 41. PCB Layout Considerations for FAN7528 8. Performance Data
90Vac 100W PF THD PF THD 0.999 3.5% 0.997 5.8%
110Vac 0.998 3.9% 0.996 6.1%
220Vac 0.992 7.0% 0.989 11.9%
264Vac 0.986 7.4% 0.954 12.8%
50W
18
FAN7528 Rev. 1.0.1
www.fairchildsemi.com
FAN7528 Dual Output Critical Conduction Mode PFC Controller
Mechanical Dimensions
Package Unit : mm
19
FAN7528 Rev. 1.0.1
www.fairchildsemi.com
FAN7528 Dual Output Critical Conduction Mode PFC Controller
Mechanical Dimensions
Package Unit : mm
20
FAN7528 Rev. 1.0.1
www.fairchildsemi.com
FAN7528 Dual Output Critical Conduction Mode PFC Controller
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.
ACExTM FAST(R) ActiveArrayTM FASTrTM BottomlessTM FPSTM Build it NowTM FRFETTM CoolFETTM GlobalOptoisolatorTM CROSSVOLTTM GTOTM DOMETM HiSeCTM EcoSPARKTM I2CTM E2CMOSTM i-LoTM EnSignaTM ImpliedDisconnectTM FACTTM IntelliMAXTM FACT Quiet SeriesTM Across the board. Around the world.TM The Power Franchise(R) Programmable Active DroopTM
DISCLAIMER
ISOPLANARTM LittleFETTM MICROCOUPLERTM MicroFETTM MicroPakTM MICROWIRETM MSXTM MSXProTM OCXTM OCXProTM OPTOLOGIC(R) OPTOPLANARTM PACMANTM POPTM Power247TM PowerEdgeTM
PowerSaverTM PowerTrench(R) QFET(R) QSTM QT OptoelectronicsTM Quiet SeriesTM RapidConfigureTM RapidConnectTM SerDesTM SILENT SWITCHER(R) SMART STARTTM SPMTM StealthTM SuperFETTM SuperSOTTM-3 SuperSOTTM-6
SuperSOTTM-8 SyncFETTM TinyLogic(R) TINYOPTOTM TruTranslationTM UHCTM UltraFET(R) UniFETTM VCXTM WireTM
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 2. A critical component is any component of a life 1. Life support devices or systems are devices or support device or system whose failure to perform can systems which, (a) are intended for surgical implant into be reasonably expected to cause the failure of the life the body, or (b) support or sustain life, or (c) whose support device or system, or to affect its safety or failure to perform when properly used in accordance with instructions for use provided in the labeling, can be effectiveness. reasonably expected to result in significant injury to the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Advance Information Product Status Formative or In Design Definition This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Preliminary
First Production
No Identification Needed
Full Production
Obsolete
Not In Production
This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
Rev. I16
21
FAN7528 Rev. 1.0.1
www.fairchildsemi.com


▲Up To Search▲   

 
Price & Availability of FAN7528MX

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X